Rainfall Intensity and Quantity Estimation Method Based on Gamma-Dose Rate Monitoring / V. S. Yakovleva, G. A. Yakovlev, R. I. Parovik [et al.]

Set Level: SensorsCoauthor: Yakovleva, V. S., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1970-, Valentina Stanislavovna;Yakovlev, G. A., Grigory Alekseevich;Parovik, R. I., Roman Ivanovich;Zelinsky, A. S., Aleksey Sergeevich;Kobzev, A. A., Aleksey AnatoljevichCorporate Author (Secondary): Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Отделение ядерно-топливного циклаLanguage: английский.Country: Switzerland.Abstract: The features of the atmospheric ?-background reaction to liquid atmospheric precipitation in the form of bursts is investigated, and various forms of them are analyzed. A method is described for interpreting forms of the measured ?-background response with the determination of the beginning and ending time of precipitation, the distinctive features of changes in the intensity of precipitation and the number of single (separate) events that form one burst. It is revealed that a change in the intensity of precipitation in one event leads to a change in the ?-radiation dose rate increase speed (time derivative). A method of estimating the average value of the intensity and amount of precipitation for one event, reconstructing the intensity spectrum from experimental data on the dynamics of the measured dose rate of ?-radiation, is developed. The method takes into account the radioactive decay of radon daughter products in the atmosphere and on the soil surface during precipitation, as well as the purification of the atmosphere from radionuclides. Recommendations are given for using the developed method to correct for changes (daily variations) in radon flux density from the ground surface, which lead to variations in radon in the atmosphere. Experimental verification of the method shows good agreement between the values of the intensity of liquid atmospheric precipitation, calculated and measured with the help of shuttle and optical rain precipitation gauges..Bibliography: [References: 23 tit.].Subject: электронный ресурс | труды учёных ТПУ | rainfall intensity | γ-dose rate | γ-background | rain sensor | method | radon decay product | liquid precipitation | atmosphere | activity | simulation Online Resources:Click here to access online | Click here to access online
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Title screen

[References: 23 tit.]

The features of the atmospheric ?-background reaction to liquid atmospheric precipitation in the form of bursts is investigated, and various forms of them are analyzed. A method is described for interpreting forms of the measured ?-background response with the determination of the beginning and ending time of precipitation, the distinctive features of changes in the intensity of precipitation and the number of single (separate) events that form one burst. It is revealed that a change in the intensity of precipitation in one event leads to a change in the ?-radiation dose rate increase speed (time derivative). A method of estimating the average value of the intensity and amount of precipitation for one event, reconstructing the intensity spectrum from experimental data on the dynamics of the measured dose rate of ?-radiation, is developed. The method takes into account the radioactive decay of radon daughter products in the atmosphere and on the soil surface during precipitation, as well as the purification of the atmosphere from radionuclides. Recommendations are given for using the developed method to correct for changes (daily variations) in radon flux density from the ground surface, which lead to variations in radon in the atmosphere. Experimental verification of the method shows good agreement between the values of the intensity of liquid atmospheric precipitation, calculated and measured with the help of shuttle and optical rain precipitation gauges.

There are no comments on this title.

to post a comment.