Курс функционального анализа : учебник / В. М. Федоров

Main Author: Федоров, В. М., Владимир МихайловичLanguage: русский.Country: Россия.Publication: СПб. : Лань, 2005Description: 351 с.ISBN: 5811405898.Series: Учебники для вузов, Специальная литератураAbstract: Книга «Курс функционального анализа» написана как учебник для студентов математических специальностей. В ней содержится изложение курса функционального анализа, читаемого в пятом и шестом семестрах на отделении., механики механико-математического факультета МГУ. Вопросы теории функций, теории приближений, теории обобщенных функций, преобразований Фурье и спектральной теории операторов освещаются в ней с единой точки зрения — теории линейных пространств. Следует отметить, что общая точка зрения функционального анализа, развиваемая в этом курсе, не является целью сама по себе, а только средством для изучения современных областей математического анализа. Например, многие трудные топологические вопросы функционального анализа излагаются на основе пространств сходимости, что позволяет быстрее и проще войти в курс теории обобщенных функций. В пределах каждой излагаемой темы мы вынуждены быть максимально краткими, и ограничиваться лишь выяснением наиболее важных вопросов, вполне осознавая, что читатель, быть может, в некоторых случаях, останется неудовлетворенным. Поэтому ряд интересных тем и лежащие в стороне вопросы были вынесены в упражнения и задачи. Последняя глава книги содержит список упражнений и задач. Большинство из них не требуют особой сообразительности, а предназначаются для более глубокого усвоения материала. От студентов требуется владение некоторыми вопросами математического анализа, например, в объеме стандартных первых четырех семестров. При этом условии книгой можно пользоваться и для самостоятельного изучения предмета..Bibliography: Библиогр.: с. 351..Subject: Функциональный анализ | математика | множества | интеграл Лебега | банаховы пространства | гильбертовы пространства | преобразование Фурье | пространства сходимости | обобщенные функции | ограниченные операторы | компактные множества | компактные операторы | упражнения | задачи | учебники
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Barcode
Books НТБ ТПУ Учебный фонд 517.9 Ф333 Available 13821000228004
Books НТБ ТПУ Научный фонд 06-663 Available 13821000331965
Books НТБ ТПУ Читальный зал технической литературы (309 НТБ) 517.9 Ф333 Available 13821000269695
Total holds: 0

Библиогр.: с. 351.

Книга «Курс функционального анализа» написана как учебник для студентов математических специальностей. В ней содержится изложение курса функционального анализа, читаемого в пятом и шестом семестрах на отделении., механики механико-математического факультета МГУ. Вопросы теории функций, теории приближений, теории обобщенных функций, преобразований Фурье и спектральной теории операторов освещаются в ней с единой точки зрения — теории линейных пространств. Следует отметить, что общая точка зрения функционального анализа, развиваемая в этом курсе, не является целью сама по себе, а только средством для изучения современных областей математического анализа. Например, многие трудные топологические вопросы функционального анализа излагаются на основе пространств сходимости, что позволяет быстрее и проще войти в курс теории обобщенных функций. В пределах каждой излагаемой темы мы вынуждены быть максимально краткими, и ограничиваться лишь выяснением наиболее важных вопросов, вполне осознавая, что читатель, быть может, в некоторых случаях, останется неудовлетворенным. Поэтому ряд интересных тем и лежащие в стороне вопросы были вынесены в упражнения и задачи. Последняя глава книги содержит список упражнений и задач. Большинство из них не требуют особой сообразительности, а предназначаются для более глубокого усвоения материала. От студентов требуется владение некоторыми вопросами математического анализа, например, в объеме стандартных первых четырех семестров. При этом условии книгой можно пользоваться и для самостоятельного изучения предмета.

There are no comments on this title.

to post a comment.